
0368.3049 Introduction to Modern Cryptography, Assignment #2 Fall 2009

Introduction to Modern Cryptography, Assignment #2

Benny Chor and Rani Hod

Published: 15/11/2009; due: 2/12/2009, in Rani's mailbox (Schreiber, 2nd �oor).

This assignment contains six �dry� problems and one �wet� problem. E�cient solutions are always sought, but a
solution that works ine�ciently is better than none. The answers to the the �wet� problem should be given as the
output of a Sage, maple or WolframAlpha session.

1. Enhancing DES

The following two keys enhancements to DES were proposed in order to increase the complexity of �nding
the keys by exhaustive search.

DESV
k,k1 (M) = DESk (M)⊕ k1,

DESW
k,k1 (M) = DESk (M ⊕ k1)

The keys' lengths are |k| = 56 and |k1| = 64 (k1 has the same length as the block length). Show that both
these proposals do not increase the complexity of breaking the cryptosystem using brute-force key search.
That is, show how to break these schemes using on the order of 256 DES encryptions/decryptions. You may
assume that you have a moderate number of plaintext-ciphertext pairs, Ci = DESV/DESW

k,k1(Mi).

2. Meet in the Middle

In lecture 4 we described ameet in the middle attack against double DES. The attack required 256 decryptions,
256 encryptions and storage for 256 messages (the decryptions of the ciphertext under all possible keys), 64
bits each. The attack used a small number of plaintext/ciphertext pairs: Mi and Ci = DESk2(DESk1(Mi)).

You were hired to perform the same task, but your employer, hurt by the recent market trends, has supplied
you with a machine capable of storing only 240 words of 64 bits each. How many encryption and decryption
operations do you need in order to recover the secret key k1, k2 with high probability? Does the number of
required plaintext/ciphertext pairs increase?

3. Cryptographic Hash Functions

Let m = m1m2 . . . mn, where every mi, i = 1, . . . , n, is a 128 bits binary string. We de�ne a hash function
H that operates on messages of this form.

• h0 is de�ned as the all zero string of length 128.

• For every i, 1 ≤ i ≤ n, de�ne hi = AESmi(hi−1).

• H(m) = hn.

(a) Show how to �nd collisions for H (namely two di�erent messages that are mapped by H to the same
string) using approximately 264 AES applications.

(b) Given a random string m, show how to �nd a di�erent string m′ such that H(m) = H(m′), using
approximately 264 AES applications.
Hint: Recall the attack on double DES.

Page 1 of 3

0368.3049 Introduction to Modern Cryptography, Assignment #2 Fall 2009

4. CBC-MACs and variable length messages

In this problem we will explore the security of CBC-MACs when the length of the message is allowed to vary.
The constructions use a block cipher, E : {0, 1}k × {0, 1}n → {0, 1}n, which you should assume to be secure
(EK(t) is the encryption of a block t of length n under the key K of length k).

In general, let x = x1x2 · · ·x`, where xi ∈ {0, 1}n for each i = 1, . . . , `. For all the variants considered in this
problem, the authentication of the message x is de�ned as the concatenation of x with MACK(x), where K
is the secret key (shared by Alice and Bob), and MACK(x) is of length n.

• We say that Fred, the forging adversary, succeeds if after seeing a small number of messages z1, z2, . . . , zs

of his choice and their MACs under the unknown secret key K, he can produce a new message w /∈
{z1, z2, . . . , zs} together with MACK(w).

• We emphasize that w can (and typically will) be constructed out of pieces depending on the zi's.

• By small number we mean s is either a constant or at most a �xed polynomial in n, the block length of
x. In addition to the number s of message/MAC pairs, Fred is also limited to polynomial (in n) time
computations.

Remark: This type of forgery is called adaptive existential forgery (adaptive since the choice of zi+1 can
depend on all previous i message/MAC pairs, and existential because it demonstrates the existence of a
message whose MAC can be forged). This is the strongest form of �reasonable adversary� considered in the
crypto world.

(a) Consider the application of `standard' CBC-MAC to messages of arbitrary length. Formally, given
x = x1x2 · · ·x`, we de�ne y0 = 0n and yi = EK(yi−1 ⊕ xi) for 1 ≤ i ≤ `. Then CBC-MACK(x) = y`.

Show that this MAC is completely insecure; break it with a constant number of queries.

(b) In order to overcome the problem of applying `standard' CBC-MAC to messages of arbitrary length,
consider the following patch.

MACK(x1, x2, . . . , x`) = CBC-MACK(x1, x2, . . . , x`, `) ,

where the number ` of blocks in x is written in binary using n bits.

Show that this patch does not hold water either; break it with a constant number of queries.

(c) Consider the following attempt to allow one to MAC messages of arbitrary length. The domain for
the MAC is ({0, 1}n)+. To MAC the message x = x1x2 · · ·x` under the secret key (K, K ′), compute
CBC-MACK(x)⊕K ′, where K has k bits and K ′ has n bits.

Show that this MAC is completely insecure; break it with a constant number of queries.

5. Orders

(a) Let a, m be two positive integers, with 1 ≤ a ≤ m− 1. The order of a modulo m, ordma, is de�ned as
the minimum positive integer ` such that a` = 1 mod m, and ∞ if no such ` exists.

Prove that ordma is �nite if and only if gcd(a, m) = 1.

(b) Let x be an integer and let p be an odd prime divisor of x16 + 1. Prove that p = 1 mod 32.

6. Primitive Elements in GF
(
pk

)
In assignment #1 we saw that in some cases (e.g., p = 2 and k = 5) GF

(
pk

)
has pk− 2 primitive roots (that

is, all elements of GF ∗
(
pk

)
except 1 are primitive).

(a) Show that, for p > 2 and k > 1, GF ∗
(
pk

)
always has some non-primitive element that is not 1.

(b) Find p− 2 such elements explicitly (using the representation of �nite �elds arithmetic).

Page 2 of 3

0368.3049 Introduction to Modern Cryptography, Assignment #2 Fall 2009

7. Primitive Elements in Zp

Let p > 2 be a prime number. Recall the algorithm we saw in class to e�ciently test whether g ∈ Z∗p is a
primitive element given the list p1, . . . , pk of all prime factors of p− 1: test whether there exists no 1 ≤ i ≤ k
such that g(p−1)/pi = 1 mod p.

(a) Unfortunately, factoring integers is a hard problem, even if they are of the special form p − 1. Take
p = 249 · 2249 − 1. Using Sage's is_prime function, verify that p is indeed a prime. Now apply factor

to p− 1. This procedure tries to factor its integer argument. For large integers it obviously not always
succeeds, neither does it always succeed for primes minus 1. However for our p, factor produces the
complete factorization in a few minutes (even on Benny's MacBook). Produce this factorization.

(b) Implement is_primitive_root. This function should take p and g as arguments and return True i�
g is primitive in Zp. You can use Sage's built-in mod(g, p).multiplicative_order() to check your
code.

(c) Use the code from (b) to �nd a random integer g > 107 such that g is a primitive element of Zp (for
p = 249× 2249 − 1) but g + 1 is not a primitive element of Zp.

1

Hint: you may want to add the factorization of p− 1 as an optional arguement to is_primitive_root,
so you wouldn't have to recompute it every iteration.

(d) Instead of looking for a prime p and trying to factor p − 1, a di�erent procedure is to look at random
for a prime q and then test if p = 2q + 1 is also a prime. In that case, a complete factorization of p− 1
is 2 × q. You may think that having both q and 2q + 1 being primes is such a rare event that we will
never run into one. Write a short Sage code that prints out two such random pairs, with q > 2400 in
both cases. You can de�nitely use is_prime here, as well as next_prime.

8. Claw Free Permutations

Two permutations f0, f1 : D → D are called claw free2 if it is infeasible to calculate x, y ∈ D such that
f0(x) = f1(y).

(a) Let p be a prime number, g be a primitive element in Z∗p, and a ∈ Z∗p. De�ne two permutations
f0, f1 : Z∗p → Z∗p by f0(x) = gx mod p and f1(y) = agy mod p.

Assuming it is infeasible to calculate a z such that gz = a, prove that f0, f1 are claw free permutations.

(b) Let m = b1b2 . . . bn be an n bit message (bi are bits) and let f0, f1 be claw free permutations on D.
De�ne the function H by

H(m) = fb1(fb2 . . . (fbn(IV) . . .)) ,

where IV is the all zero string in D. For example, if m = 011 then H(m) = f0(f1(f1(IV))).
Assume that it is infeasible to �nd a z ∈ D such that f0(z) = IV or f1(z) = IV . Prove that H is a
collision resistant hash function. In other words, show that if m1 6= m2 and H(m1) = H(m2), then we
can e�ciently either �nd a pair x, y ∈ D such that f0(x) = f1(y), or a z ∈ D such that f0(z) = IV or
f1(z) = IV . Note that m1 and m2 can have di�erent lengths.

1The probability that among the fewer than 100 values of g submitted by the course participants there will be a collision is so small

that we will interpret such collision as a collusion and will act accordingly.
2This is not the same de�nition of claw freeness we saw in lecture 4.

Page 3 of 3

